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PREFACE

This study was initiated as Subtask 3, Orbitirig Propellant Depot Safety Study

of NASA Study C-II, Advanced Missions Safety Studies. Other studies in this
series are: (i) Subtask 1, TNT Equivalency Study, Aerospace Report No.
ATR-71(7233)-4; and (ii) Subtask 2, Safety Analysis of Parallel versus Series
Propellant Loading of the Space Shuttle, Aerospace Report No. ATR-71(7233)-1.

The study was supported by NASA Headquarters and managed by- the Advanced
Missions Office of the Office of Manned Space Flight. Mr. Herbert Schaefer,
the Study Monitor, provided guidance and counsel that significantly aided this

effort.

Study results are presented in three volumes; these volumes are summarized

as follows:

Volume I: Management Summary Report presents a brief, concise
review of the study content and summarizes the principal conclu-
sions and recommendations.

Volume II: Technical Discussion provides a discussion of the
available test data and the data analysis. Details of an analysis
of possible vehicle static failure modes and an assessment of
their explosive potentials are included. Design and procedural
criteria are suggested to minimize the occurrence of an explosive
failure. :

Volume 1II: Appendices contains supporting analyses and backup
material,
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APPENDIX A

SELECTION OF ORBITING PROPELLANT DEPOT
PROPELLANT TRANSFER SUBSYSTEMS

A1l © GENERAL

There are three basic requirements to be satisfied when consiciering tt1e flow
transfer of propellants at the Orbiting Propellant Depot (OPD). These are:

(i) a me‘tho‘cll for propellant settling (ullage control); (ii) a means of pre“ssur_iza-
tion; and (iii) the propellant transfer ‘technique. This appuenelix discusses the
select1on of the required subsystems for the study baseline system; contrac-
tor data were used wherever possible in selecting subsystems for the study

N

baseline conf1gurat1ons

A,Z -+ -ULLAGE CONTROL

Four ‘methods of ullage control were considered: (i) linear aeceleratioh,
(ii) retational acceleration, (iii) dielectrophoresis, and (iv) c’apillary reten-
tion. The basic characteristics of the methods are described ahd evaluated:

in the following paragraphs and are summarized in Tables A-1 and A-2.

A.2.1 .Description of Ullage Control Subsystems

A.2.1.1 Linear Acceleration

In the linear acceleration method, vehicle thrust is avpplied albn‘g an axis of
the OPD for the entire duration of the propellant transfer; acceleration is
generally provided in the direction normal to the orbit plane and is ;elatively
small, on the order of approximately 10-4t g's. An attractive feature ot the
linear acceleration method is that the OPD and the resupply OV move as an
integral system and there is no relative motion or movement within OPD/OV
combination itself. The OPD must be accelerated during the entire transfer

method.
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A.2.1.2 Rotational Acceleration

Two modes of rotational acceleration were considered for ullage control;

(i) rotation about the pitch or yaw axis, and (ii) rotation about the roll axis.

In the pitch/yaw rotation method, the entire OPD/user OV combination is
rotated around either the pitch or the yaw axis. OPD rotational thrust
would be required only to achieve the desired rotational rate, and thereafter
thrust would not be required. However, stabilization around the rotational

axis must still be provided.

In the roll rotation acceleration method, the entire OPD/user OV combination
rotates around the roll axis. This is similar to the pitch/yaw rotation method;
however, the OPD itself is in a more stable attitude when rotating around the
roll axis. Rotational thrust is applied only to achieve the desired rotational

level in this method also.

A.2.1.3 Dielectrophoresis

The dielectrophoretic ullage control utilizes the dielectric characteristics

of either of the cryogenic propellants in order to orient the liquid and vapor.
An electromagnetic field is imposed in the tank and, because of the differences
in dielectric characteristics between the liquid and the vapor, liquid and vapor

separation is achieved.

A.2.1.4 Capillary Retention

The fourth method of ullage control considered was a capillary retention
device. Because of the low-g environment in orbit, surface tension forces

dominate and liquid can be oriented within a capillary or wick structure.

A.2.2 Evaluation of Methods

A.2.2.1 Linear Acceleration

Linear acceleration provides the lightest weight ullage control system for
optimum LH2 transfer time; it is well suited for pump transfer and also is

an active and positive means of ullage control. The vapor pullthrough can



be delayed and propellant residuals minimized by proper baffling of the OPD
tank. A major disadvantage with the linear acceleration method is that the
acceleration imposes a perturbation on the orbit of the OPD. This problem
can be part/ially alleviated by using low levels of acceleration (apprbximately
10'4g) and by accelerating the vehicle in the direction normal to the orbital

plane for integral numbers of orbits.

A.2.2.2 Rotational Acceleration

Rotational acceleration utilizes small quantities of thrust propellaht, and
consequently, is attractive for long-duration propellant transfers ( five hours).
Propellant transfer time need not be limited to multiples of orbital periods;

and also orbital perturbations can be minimized. This method however may
necessitate long transfer lines because of the propellant locating itself in

the extreme ends of the OPD. In addition, guidance and communications

and the continual shifting of its cg and its mass moment of inertia. Thme_“ roll
acceleration method is quite similar to the pitch/yaw acceleration method.
However, this method is more stable than the pitch/yaw method because the

rotation is along a major axis.

A.2.2.3 Dielectrophoresis

The primary feature of the dielectrophoretic method of ullage control is that
the system is completely passive and there are no orbital perturbations
imposed on the OPD. However, it is a heavy system because of the necessary
electrodes, attachments, and power requirements; furthermore, no systerri
has been tested or developed for the large scale OPD which is under

consideration.

A.2.2.4 Capillary Retention é

Capillary retention makes for a completely passive system. However, the .
capillary system does not have the high power requirements of the dielectro-

phoretic system. The primary experience with capillary systems has been



with small engine liquid propellant start tanks, and they have not been tested
for continuous liquid transfer. This method is adversely influenced by heat
leaks through the capillary structure, which can cause vapor formation within
the capillary structure which can alter liquid/gas equilibrium configurations.

Such a system is limited to low levels of external acceleration.

A.3 PRESSURIZATION

Two methods of tank pressurization were considered: (i) external inert gas
pressurization using stored helium gas; and (ii) liquid /vapor conversion.
Although the stored gas pressurization system was lighter for the oxygen
tank, this method was rejected as the result of technical reviews at NASA
and liquid/gas conversion was used for both tanks. In this method, liquid
is bled from each of the tanks, pressurized and vaporized, and reintroduced
into the ullage section of each tank. The pressurant gas requirement is
based on the thermodynamic properties of the fluids and the bulk density of
the liquid expulsed. Both oxygen and hydrogen tanks require liquid/gas con-
version equipment. Table A-3 summarizes the advantages and disadvantages

of the two systems.

A.4 PROPELLANT TRANSFER

Three modes of propellant transfer were considered: pump transfer, positive
displacement, and direct pressure. In the pump transfer subsystem, a pump
is used to provide the necessary head to transfer the propellant from the
donor tank to the recipient tank. In this method, propellant is introduced to
the pump with the necessary net positive suction head (NPSH). The pump
provides the necessary work to transfer the propellant into the recipient tank
at the required temperature and pressure. In the positive displacement
method, a positive displacement device, either a bladder or a piston, is used
to expulse propellant out of the donor tank into the recipient tank. No pumps
are used in this system. In the direct pressure system, the ullage above the
liquid is pressurized so as to provide the required NPSH to push the liquid
into the recipient tank. In this method, the propellant is effectively expulsed

from the donor tank into the recipient tank.
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Table A-4 presents the major advantages and disadvantages associated with
the three transfer methods. Pump transfer does not require a high pressure
and results in a low residual gas weight. Pumping also provides the best
method of controlling the propellant transfer rate. A disadvantage of this
system is that a pressure source and a phase control are required for the
entire duration of propellant transfer. In the positive displacement method,
no ullage control is required. This is the lightest method for oxygen transfer.
However, a bladder or piston is required in this system with the mechanism
necessary to expulse the fluid. The applicability of bladders for tanks of

this size is currently questionable. The direct pressure method requires

the fewest moving parts and the propellant is effectively expulsed from one
tank to another. High ullage pressures are required in this system;
consequently, there is a high residual gas weight associated with this method.
Since propellant transfer rate is limited by the ullage pressure, the transfer

rate will be constrained by the structural design of the tank.

A.5 BASELINE SYSTEM SELECTION

Based on the cursory review and evaluation of the three major subsystems
required for a propellant flow transfer system, the linear acceleration

method was selected for phase control; pump transfer was selected for pro-
pellant transfer; and liquid/gas conversion was selected for the pressuriza-
tion method. Although there currently is much debate over the merits of the
linear acceleration method as against those of the rotational acceleration
method, linear acceleration was selected in this study because of the relatively
uncomplex nature of the method and because this method precludes the require-
ment of rotating joints, seals, and gimbals. The pump transfer method was
selected because it is considered that this method provides the best control

of propellant flowrate. Liquid/gas conversion was selected because of the
NASA requirement to maintain only these two propellants on the station

(i. €., no helium stored in the OPD).
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APPENDIX B

Docking Mechanism and Interface Mating

Configurations
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APPENDIX B

DOCKING MECHANISM AND INTERFACE
MATING CONFIGURATIONS

B.1 GENERAL

This appendix contains a discussion of the docking mechanism and interface

mating configurations considered in the hazards analysis.

The docking mechanism is essentially the same for all OPD éoncepts, differing
only in details of operation. The mechanism consists primarily of a universal

docking adapter and locking latches.

The resupply and dispensing fluid and electrical interfaces are the same for
both the integral and semimodular concepts. The same interface configura-
tion is also utilized in the modular concept when a propellant tank is trans-

f‘erred to the user OV,

B.2 DOCKING CONFIGURATION

B.2.1 Integral and Semimodular Concepts

The docking sequence for the integral and semimodular concepts is shown in
Figure B-1. During the OPD's quiescent mode of operation, the dockiﬁg
mechanism is retracted into a protective housing which also contains the

propellant transfer interface connectors.

When a resupply OV or user OV is to dock with the OPD, the mechanism is
actuated to the extended position. In this position, the mechanism projects
beyond the transfer interface connectors, minimizing the likelihood of their
being damaged by the docking operation. With the OV secured to the OPD, the
docking mechanism is retracted into its housing, drawing the OV into position
for the interface connectors to be mated. The process is reversed to separate

the OV from the OPD.
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B.2.2 Modular Concept

The docking configuration established for the modular concept is presented in
Figure B-2. This configuration differs from that described for the integral and
semimodular concepts in that the docking mechanism located on the OPD is

fixed, since it need not extend to protect any interface conne'ctoi's.

It will be noted that the propellant tanks used in this concept have docking
adapters on both ends. The adapter on the tank end that mates with the user
vehicle houses the interface connectors. The docking adapter on the user
vehicle is identical in configuration and operation to that described in para-
graph B. 2.1, extending for the docking ‘sequence and retracting to position

the transfer interface connectors for mating.

B.3 " INTERFACE MATING

B.3.1 . Integral and Semimodular Concepts

There are two interface mating concepts associated with these OPD configura-
tions; one for resupply of the OPD, the other for servicing a user OV. It

is recommended that the structure surrounding the interface be vented to
prevent poc;keting of propellant gases that could result in possible fire explo-
sion. The ability to purge this area from the user OV helium tanks appears

desirable.

B.3.1.1 OPD Resupply

During resupply operations, a propellant module is attached to the OPD
docking mechanism by the resupply OV which then stands off a 'safe distance
and commands retraction of the docking mechanism. The retraction cycle
automatically engages the fluid, pressurant, and electrical connectors neces-
sary for propellant transfer (Figure B-3). The cycle is reversed to allow the
resupply OV to recover the propellant module from the OPD when the transfer

is complete.
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B.3.1.2 User OV Resupply Configuration

Interface mating for user OV resupply operations is similar to that described
for OPD resupply operations, except that the interface connectors are not
automatically mated when the docking mechanism is retracted. In this case,

the retraction operation only positions the connectors for mating.

Mating of the interface connectors is controlled by the user OV. Hydraulic
or electrical actuators (Figure B-4) allow each connector to be extended for
mating. When connection is made, a leak check system utilizing the user
OV's helium pressure supply is activated to check the integrity of the con-
nections prior to initiating propellant flow. Redundant fluid transfer con-
nectors are provided in the event that a transfer connector malfunctions. To
terminate the propellant transfer and separate the user OV from the OPD,

these procedures are conducted in reverse order.

B.3.2 Modular Concept

When a propellant tank is transferred, the interface connectors are mated
and pressure tested in the same manner as described in paragraph B.3.1.2,
except that the retraction of the docking adapter prior to mating occurs on
the user OV side of the interface (Fig. B-2).

B-6
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APPENDIX C

Hazard Categories
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APPENDIX C

NASA HAZARD CATEGORIES

C.1 GENERAL

The NASA hazard categories noted below were used in the hazard analysis
reported in this study. They were obtained from the Office of Manned Space
Flight, Program Directive M-D-MT-1700. 120, dated 12 December 1969, and

are repeated here for the convenience of the reader.

C.2 SAFETY CATASTROPHIC

Condition(s) such that environment, personnel error, design characteristics,
procedural deficiencies, and/or subsystem or component malfunction(s) will
severely degrade system performance(s) and might cause subsequent system

loss, death, or multiple injuries to personnel.

C.3 SAFETY CRITICAL

Condition(s) such that environment, personnel error, design characteristics,
procedural deficiencies, and/or subsystem or component malfunction(s) might
cause equipment damage or personnel injury, or result in hazard(s) requiring

immediate corrective action for personnel and/or system survival.

C.4 SAFETY MARGINAL

Condition(s) such that environment, personnel error, design characteristics,
procedural deficiencies, subsystem failure(s), and/or component malfunction(s)
might degrade system performance but could be counteracted or controlled

without major system damage or injury to personnel.

C.5 SAFETY NEGLIGIBLE

Condition(s) such that personnel error, design characteristics, procedural
deficiencies, subsystem failure(s) and/or component malfunction(s) might
not result in major system degradation and would not produce system func-

tional damage or personnel injury.
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